Disease Modeling References
A comprehensive bibliography organized by project, documenting the epidemiological literature, mathematical methods, and data sources that informed each modeling study.
General Methodology
Foundational texts and methods applicable across multiple projects.
-
Brauer, F., van den Driessche, P., Wu, J (Eds.) (2008).
Mathematical Epidemiology
.
Springer.
Comprehensive textbook on compartmental modeling, parameter estimation, and epidemic theory.
-
Storn, R., Price, K. (1997).
Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces
.
Journal of Global Optimization, 11, 341-359.
Global optimization algorithm used for parameter estimation in the Cuba HIV/AIDS model.
Cuban HIV/AIDS Model
Compartmental modeling of contact tracing effectiveness (1986-2000).
Senegal Yellow Fever Outbreak (2002)
SEIR model with vaccination intervention and parameter estimation.
-
Barnet, E. D. (2007).
Yellow fever: epidemiology and prevention
.
Clinical Infectious Diseases, 44(6). 850-856.
Overview of yellow fever epidemiology and transmission dynamics.
-
Garske, T., Van Kerkhove, M. D., Yactayo, S., Ronveaux, O., Lewis, R. F., Staples, J. E., ... & Ferguson, N. M. (2014).
Yellow Fever in Africa: estimating the burden of disease and impact of mass vaccination from outbreak and serological data
.
PLoS Medicine, 11(5), e1001638.
Infectious period estimates and vaccination impact assessment methodology.
-
Monath, T. P. (2012).
Review of the risks and benefits of yellow fever vaccination including some new analyses
.
Expert Review of Vaccines, 11(4), 427-448.
Vaccine efficacy data and safety profile.
-
Monath, T. P. & Vasconcelos, P. F. (2015).
Yellow Fever
.
Journal of Clinical Virology, 64, 160-173.
Comprehensive review of clinical parameters including incubation period (6 days).
-
Staples, J. E., Gershman, M., & Fischer, M. (2010).
Yellow fever vaccine: recommendations of the Advisory Committee on Immunization Practices (ACIP)
.
MMWR Recommendations and Reports, 59(RR-7), 1-27.
CDC vaccine guidelines and efficacy standards (≥95%).
-
World Health Organization (2023).
Yellow Fever
.
WHO Fact Sheets.
Current epidemiology, outbreak data, and prevention strategies.
Measles Agent-Based Model in Schools
Individual-level simulation of measles transmission with spatial structure and vaccination clustering.
Epidemiological Parameters
-
Centers for Disease Control and Prevention (CDC).
Measles (Rubeola): For Healthcare Professionals
.
CDC Website.
MMR vaccine efficacy (97% with 2 doses), infectious period (8 days), clinical parameters.
-
Guerra, F. M., Bolotin, S., Lim, G., Heffernan, J., Deeks, S. L., Li, Y., & Crowcroft, N. S. (2017).
The basic reproduction number (R₀) of measles: a systematic review
.
The Lancet Infectious Diseases, 17(12), e420-e428.
Systematic review of R₀ estimates (12-18), latent period (~10 days), transmissibility parameters.
-
Phadke, V. K., Bednarczyk, R. A., Salmon, D. A., & Omer, S. B. (2016).
Association Between Vaccine Refusal and Vaccine-Preventable Diseases in the United States
.
JAMA, 315(11), 1149-1158.
Evidence for vaccine refusal clustering and outbreak risk in undervaccinated communities.
-
World Health Organization (2017).
Measles vaccines: WHO position paper – April 2017
.
Weekly Epidemiological Record, 92(17), 205-228.
WHO vaccine efficacy standards, global epidemiology context, herd immunity thresholds.
Contact Network Studies
-
Read, J. M., Edmunds, W. J., Riley, S., Lessler, J., & Cummings, D. A. (2012).
Close encounters of the infectious kind: methods to measure social mixing behaviour
.
Epidemiology & Infection, 140(12), 2117-2130.
Contact pattern measurement methodology, within-classroom vs between-classroom mixing ratios.
-
Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J. F., ... & Vanhems, P. (2011).
High-resolution measurements of face-to-face contact patterns in a primary school
.
PLOS ONE, 6(8), e23176.
Empirical contact network data from primary schools: ~20 within-classroom contacts/day, contact duration distributions.
Agent-Based Modeling Methodology
-
Ferguson, N. M., Cummings, D. A., Fraser, C., Cajka, J. C., Cooley, P. C., & Burke, D. S. (2006).
Strategies for mitigating an influenza pandemic
.
Nature, 442(7101), 448-452.
Large-scale ABM implementation for pandemic planning, school closure intervention modeling.
-
Halloran, M. E., Longini Jr, I. M., Nizam, A., & Yang, Y. (2002).
Containing bioterrorist smallpox
.
Science, 298(5597), 1428-1432.
Foundational work on ABM for vaccine-preventable diseases, intervention strategy evaluation.
-
Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G., Rosenfeld, K., Hart, G. R., ... & Klein, D. J. (2021).
Covasim: an agent-based model of COVID-19 dynamics and interventions
.
PLOS Computational Biology, 17(7), e1009149.
Modern ABM framework demonstrating network structure, stochastic dynamics, and intervention testing.
-
Willem, L., Verelst, F., Bilcke, J., Hens, N., & Beutels, P. (2017).
Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015)
.
BMC Infectious Diseases, 17(1), 612.
Comprehensive review of ABM best practices, validation approaches, and methodological standards.